UNIVERSITY OF MIAMI

INFANT CRY DETECTION

By

Sunrito Bhattacharya

A THESIS PROJECT

Submitted to the Faculty
of the University of Miami
in partial fulfillment of the requirements for
the degree of Master of Science in Music Engineering Technology

Coral Gables, Florida

March 4, 2016
UNIVERSITY OF MIAMI

A Thesis Project submitted in partial fulfillment of the requirements for the degree of Master of Science in Music Engineering Technology

INFANT CRY DETECTION

Sunrito Bhattacharya

Approved:

Prof. William C. Pirkle
Associate Professor of Music Engineering

Dr. Shannon de l’Etoile
Associate Dean of Graduate Studies

Dr. Daniel Messinger
Professor of Psychology

Dr. Christopher L. Bennett
Research Assistant Professor of Music Engineering
This thesis encompasses modern age feature extraction and machine learning tools for the detection of infant cry signals. In developmental psychology, infant crying is a measure of distress and an automated tool for measurement is extremely important. Initial testing is done using the MIRToolbox in MATLAB which proved to be non-ideal for real time signal analysis due to slow speed and poor memory management in MATLAB. Thus, a python based real time feature extraction tool Librosa is used to calculate parameters MFCC, delta-MFCC, pitch, zero-crossing, spectral centroid and energy of the signal. A large chunk of 21 minutes cry signal is used for feature extraction and used for the training of the crying segment. A similarly sized non-cry segment consisting of other sounds as speech, baby whimpering, toy sounds etc. are used to train the non-crying part of the model. A 111091 instances and 28 attributes based dataset (.CSV) is developed for our classifier. A Zero-R rule is used for baseline establishment, followed by classification using a random tree bagger and a multilayer perceptron. An error rate of 2.5% was achieved using 100 trees and 10 fold cross-validation using random forest and a similar result was achieved with a MLP with 500 training epochs, 15 hidden layers and 10 fold cross-validation. This is a major improvement over the existing results and the methods used for cry detection and much faster in feature extraction and is capable of handling much larger chunks of data for training and testing.
ACKNOWLEDGMENTS

Heads up, this is in the longest section of the thesis. I would like to start by acknowledging Dr. Daniel Messinger without him I could not have been here and finished this degree. Thank you Dr. Colby Leider for the initial idea and the introduction to the field of information retrieval. Special thanks to Dr. Chris Bennett for a key idea. Professor Pirkle, thank you for taking me up last minute and supporting me in every possible way.

I would also like to thank every MuE and GMuE for making this ride a journey of a lifetime. Thanks to Chris for being the biggest source of motivation and showing me true work ethics, to AJ for the spunk and various other things, to Gyawu for reintroducing us to tadpoles, to Shijia for providing the motivation to stay in academics for a prolonged period of time, to Tom for showing us its never too late, to Akhil for being Akhil, to Kerline for extreme angst, to Tia for showing us true humility and being aggressively nice, to Kathryn for making Miami finally feel like home, to Susanta for always hosting me in Tampa and finally to Rhiya for being the best friend I could ever have. Special thanks to Madhur for all his Python help and Samarth for being the true father figure - he single handedly got me through grad school.

Most importantly I would like to thank my family and Suvabrata and Sumita Bhattacharya for being role model parents. I definitely got lucky in that department. Nothing I write here can describe what they have done for me. Thank you Ty and Kuttu, for all the love and being the cousins I can always look up to.

Special mention for Innovation Kitchen and Martha for their impeccable Cafe Con Leche, S&S diner for sustaining me in most desperate times, to the Yard House for the Dark Hour, the lovely people at Crown, Pollo Tropical (the life changer) and to Zuma for still being the place I can’t afford.
DEDICATION

To my grandmom, Ms Mukul Sarkar cause you are the strongest and the most inspirational person I have ever met.

To India For sustaining me for over two and a half decades.
PREFACE

"The real question is not whether machines think but whether men do. The mystery which surrounds a thinking machine already surrounds a thinking man", [Skinner, 2014].
TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iii

DEDICATION .. iv

PREFACE .. v

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER

1 Introduction .. 1

2 Background and Previous Work 5
 2.1 Cry Detection: .. 5
 2.1.1 Pitch frequency: 8
 2.1.2 MFCC: ... 9
 2.1.3 Inharmonicity: 9
 2.2 Laughter Detection: 12
 2.2.1 Cepstral Features: 15
 2.2.2 Delta Cepstral Features: 16
 2.2.3 Spatial Cues: 16
 2.2.4 Modulation Spectrum: 16
 2.3 Environmental Sound Classification: 17

3 Tools and Methods 20
 3.1 Tools Used: .. 20
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Random Forrest Runtime Analysis</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>In-harmonicity of Crying</td>
</tr>
<tr>
<td>2</td>
<td>In-harmonicity of Non Crying</td>
</tr>
<tr>
<td>3</td>
<td>Similarity Matrix of Crying</td>
</tr>
<tr>
<td>4</td>
<td>Similarity Matrix of Non Crying</td>
</tr>
<tr>
<td>5</td>
<td>MFCC of Crying</td>
</tr>
<tr>
<td>6</td>
<td>MFCC Non Crying</td>
</tr>
<tr>
<td>7</td>
<td>Pitch of Crying</td>
</tr>
<tr>
<td>8</td>
<td>Pitch Non Crying</td>
</tr>
<tr>
<td>9</td>
<td>RMS Crying</td>
</tr>
<tr>
<td>10</td>
<td>RMS Non Crying</td>
</tr>
<tr>
<td>11</td>
<td>MFCC Crying</td>
</tr>
<tr>
<td>12</td>
<td>MFCC Non Crying</td>
</tr>
<tr>
<td>13</td>
<td>Energy Crying</td>
</tr>
<tr>
<td>14</td>
<td>RMS Non Crying</td>
</tr>
<tr>
<td>15</td>
<td>Spectral Centroid Crying</td>
</tr>
<tr>
<td>16</td>
<td>Spectral Centroid Non Crying</td>
</tr>
<tr>
<td>17</td>
<td>Zero Crossing Crying</td>
</tr>
<tr>
<td>18</td>
<td>Zero Crossing Non Crying</td>
</tr>
<tr>
<td>19</td>
<td>Zero-R Classification</td>
</tr>
<tr>
<td>20</td>
<td>MLP hidden layers</td>
</tr>
<tr>
<td>21</td>
<td>MLP Xval</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>22</td>
<td>MLP % split</td>
</tr>
<tr>
<td>23</td>
<td>RF % split</td>
</tr>
<tr>
<td>24</td>
<td>RF X-Val</td>
</tr>
<tr>
<td>25</td>
<td>ROC RF1</td>
</tr>
<tr>
<td>26</td>
<td>ROC MLP</td>
</tr>
<tr>
<td>27</td>
<td>Cost RF</td>
</tr>
<tr>
<td>28</td>
<td>Cost MLP</td>
</tr>
</tbody>
</table>
1

Introduction

Machine Learning is the modern powerhouse powering everything from Google to Facebook, from Amazon to Spotify in today's society. Machine learning systems are used to identify objects in image, transcribe speech to text (or vice-versa), match news items, posts or products with users' interests and select relevant results of search.

Conventional machine learning techniques were restricted in various ways, especially in the usage of the natural data in the raw form. For multiple decades, designing of successful machine learning or pattern recognition systems required skilled study of the domain in question and design of a feature extractor that converted the raw data into usable internal representation or a feature vector from which the learning system can learn patterns and classify it into classes.

A detailed survey has been performed on the traditional machine learning techniques to measure their efficiency. There is always a trade off on computational efficiency vs accuracy (when it comes to the traditional methods since they were designed on much slower computers). Newer, more elaborate methods of learning, deep neural networks have developed. Hence, they are explored and their performance is measured against the traditional statistical machine learning techniques.

The research question is whether automated detection of infant crying can
be performed in a principled matter that could be useful to developmental psychology. Crying is an important parameter since it is an indication of distress in infants. Recording techniques in this thesis use the Strange Situation Procedure (SSP). It is a behavioral assessment where the infant is separated from and reunited with the mother twice and these reunions are referred to as R1 and R2. Since, experts ratings are time consuming and non-objective in the assessment of infant behavior, automatic systems are preferred. Thus, an automatic cry detector is required.

In the past, the cry, laughter and many other specific sound-form detection was performed in the order of data cleaning, feature extraction, key feature identification (manually or through data reduction algorithms such as a the Principal Component Analysis (PCA)), dividing the data for cross-validation and training and testing a classifier against it. The same route has been followed in our case where the audio data recorded during a Strange Situation study has been chopped up into separate cry and non cry segments. Feature extraction has been performed consisting of MFCC, delta MFCC, pitch, energy, zero crossing, spectral centroid after frame segmenting the data and they are stored in a CSV file. For our initial study we perform the feature extraction using MATLAB and then pass the CSV through the popular machine learning suit called WEKA (Waikato Environment for Knowledge Analysis) developed by the University of Waikato, New Zealand. It has been developed using Java and has a wide array of analytical and visualization tools that can be used for predictive modeling. The
CSV is analysed using WEKA to compare various classifier such as the J4.8, Random Forest Trees and Neural Networks such as the multilayer perceptron. The theoretical best result achieved was an error rate of 4% which is a significant improvement over the existing ones.

The most common learning method is supervised learning. If we consider the most common image processing problem of breaking down a scene into its components (for example, a house, a car, trees etc.), we first collect a large set of images, extract the various features within the images and then store them in a vector form known as the feature vector. The feature vector is then used to train a model to identify the quantifiable features. The desired category should ideally have the highest score but that is not possible without training with an objective function which stores the error between the measured score and the desired output score. The machine adjusts its internal parameters to reach the desirable score; these parameters are often referred to as the weights. These weights are adjusted to reach a combination that gives us our desired result. In big data analytics world, there could be millions of such weights and labeled categories. For the proper adjustment of the weights, the learning algorithm calculates a gradient vector (usually using the Stochastic Gradient Descent algorithm). The algorithm indicates by what factor would the change in weight affect the system and the cost function of the error is minimized by adjusting the weights in the opposite direction to the gradient vector. Since the 60s, the linear classifiers can only divide up the input spaces into simple regions divided by the hyperplane.
Based on the covariance matrix and the determinants, the hyperplane could be a hyper-sphere, hyper-ellipse etc [Dow and Penderghest, 2015]. But in our specific example of speech signals, the model needs to insensitive to irrelevant variations in the input such as the accent of speech, gender of the speaker etc. Since deep learning architecture is a multiple stack of various simple learning layers, it often computes non-linear input-output mappings. and these are impervious to large irrelevant variations such as the accent or the pitch of the speaker.
2

Background and Previous Work

2.1 Cry Detection:

ASD or Autism Spectral Disorder causes a variance in the social interaction and communication of infants and adults alike. It is a neurodevelopmental disorder often manifesting at an early age and affecting close and repetitive behaviour and causing variable cognitive ability [Messinger et al., 2013]. At the current measure more than 1 in 100 children are affected [for Disease Control et al., 2010]. ASD characteristics could arise at a variable rate in different infants with stable diagnosis and characterization available at the age of 3 [Landa et al., 2007] [Shumway et al., 2011]. There is a discussion on the autism community about high risk siblings who are the siblings of kids with who have already been diagnosed with autism.

Extensive research on detection of autism is currently carried out in the department of psychology at the university of Miami. There is an extensive focus on early detection of autism. Studies have already been carried out on sex differences in autism [Messinger et al., 2015], integrating smiles into Initial Joint Attention (IJA) [Gangi et al., 2014], where high risk children showed much lesser anticipatory smile than the low risk children.

Work was also carried out in Strange Situation procedures, involving manually annotating every second of infant interaction where the infant interacted with both a stranger and his/her mother and spent time alone. This
task is not only tiresome but also highly cumbersome. This gives rise to the possible need for the automatic detection of events from an audio signal. There are existing Digital Language Processing systems such as LENA [Ford et al., 2008]. It is a natural language processing system which is supposed to analyze and child and adult vocalization and automatically annotate the results. It works in terms of feature extraction and then segmentation of audio of practical noisy environments. The main of objective of LENA is to estimate Adult Word Counts (AWC), Child Vocalizations (CV), and Conversational Turns (CT) between the adult and key child. Professional audio transcription was used while training the model in LENA so that the fine differences between adult and child speech could be differentiated. Once the difference was established, the adult and child speech was separately passed through different segmenters and classifiers. The child speech is differentiated into crying, babble, laughter, etc. while the adult speech is differentiated into words and they were counted. There is a separate classifier for non speech signals as well. The hardware used for the LENA recording is a portable low power recorder using 50 mW power and is supplied with a 450 mAh battery which lasts it for 16 hours. In case it runs out of power, the data will not get erased. USB 2.0 is used for communication with the system.

Specifically, cry detectors have been discussed in various journal papers over the years. In a paper where baby monitoring through MATLAB graphical user interface is discussed [Reddy et al., 2014], the primary parameters for
feature extraction are discussed. The Magnitude Sum Function is the sum of the absolute value of the input signal. MSF is not used individually since it gives the same value for a tired signal and a noisy signal. To overcome this problem it is used together with pitch and zero crossing. Thus, the next parameter calculated is pitch. Pitch is a subjective psycho-acoustical feature of a sound which helps us determine the fundamental frequency of sound. While the natural frequency of an adult male voice lies between 100-350 Hz, the pitch of a baby crying lies between 350-500 Hz. In this paper, the pitch is calculated using the Short Term Auto-correlation Method (S.T.A.C). In terms of finding energy to determine between noise and tired signal, a slight disparity has been noticed. Usually a noisy signal has the maximum energy of 170J where a weakest tired signal at least has an energy of 200J.

In a paper to recognise the baby’s emotions for an automated caregiver [Yamamoto et al., 2013], a pattern recognition system is developed to find the various emotions of a baby by studying the inherent patterns within its cry signals. For training purposes, a 32 dimensional Fast Fourier Transform is used in the paper. The lack of power in silent regions of the audio signal is subtracted from the frequency regions of the audio signal. These subtracted values form the elements of the feature vector. Principal Component Analysis (PCA) is performed to find the most significant elements. The nearest neighbor criteria is used to project elements onto the feature space and predict the emotion related to the babies cry signal. The aim of of the paper is to make a robot recognize the
emotions attached to the cry signal so that it could do the needful to ameliorate the situation.

Rami Cohen and Yazhar Lavner wrote yet another significant paper on infant cry detection [Cohen and Lavner, 2012]. They developed a particular algorithm for cry detection especially in situations where the baby was exposed to danger, for example, in a car. The proposed algorithm can be divided into two parts. The first part involves feature extraction from the signal which involves finding the Mel Frequency Cepstral Coefficient and Short term energy from the signal. A K-NN classifier is used in the second part and it used to classify the cry signal using the acquired pitch and harmonic info. For the measure of the robustness of the model and to make sure it works in practical scenarios, various noisy signal such as road noise, car horns were introduced. A database of cry signal was also used for evaluation. As popularly stated, an infant cry signal can be considered as a natural alarm system and can be used to always indicate discomfort infants [Singer and Zeskind, 2001]. The parameters that are found in this paper are:

2.1.1 Pitch frequency:

The fundamental frequency f_0 is calculated since it is important for classification purposes. The pitch calculation is based on a combination for cepstral method [Noll, 1967] and cross-correlation method. The next feature calculated is the:
2.1.2 *MFCC*:

MFCC [Klautau, 2005] which provides a short term power spectrum of the signal. MFCC coefficients are calculated by multiplying the each segment of Short Time Fourier Transform by m triangle shaped segments of band-pass filter segments with their central frequencies and width arranged according to the mel scale. The total energy is calculated and a Discrete Cosine Transform (DCT) is performed to find the MFCC.

2.1.3 *Inharmonicity*:

It provides of a good indication of the harmonic peaks present in the signal. DFT of the each analysis frame is calculated and a predefined number of peaks is considered. The sum of the mod of the highest frequencies of each frame and the fundamental frequency gives the harmonicity value.

The K-NN classifier classifies the cry sound as a 1 and a no cry segment as a 0. The testing on the proposed algorithm was performed by passing a 370 second audio out of which 50% was crying. Additive Gaussian Noise was introduced to test for the robustness of the system. The biggest advantage of this algorithm is its simplicity and computational efficiency.

Alternate methods for cry detection are explored by Bhagatpatil Varsharani V, V. M. Sardar [Bhagatpatil and Sardar,] who consider LPCC instead of MFCC in an automatic cry detector. There exists a system developed by Priscilla Dustan called the Dustan Baby Language (DBL) which is yet another DLP, similar to LENA. It finds out the meaning of baby cries in infants
who are between 0-3 months old. According to DBL version, there are five baby languages: "neh" means hunger, "owh" means tired which indicates that the baby is getting sleepy, "eh" means the baby wants to burp, "eairh’ means pain (wind) in the stomach, and "heh" means uncomfortable (could be due to a wet diaper, pain). Like many other elements in nature, infant crying is rhythmic and periodic in nature which consists of alternating cries and inspirations (breathing in general). A large amount of air flows through the larynx which causes the distress signal and there is a repeated opening and closing of the vocal chords which causes the rhythmic pattern. The parameters that were calculated here for the cry detection are Zero-Crossing Rate(ZCR) and Fundamental frequency [Kim et al., 2013], and Fast Fourier Transforms (FFT). Unlike ideal clinical trial situations which are entirely noise free, this system also aims at robustness in noisy, real life situations which could be aimed to alert the parents in case of any physical danger. The system works in two phases, first, when the LPCC components are calculated, and later when vector quantization is used for the detection of the cry sounds. During the past studies of cry classification of normal and abnormal (hypoxia-oxygen lacks) infant was carried by using a neural network which produced 85% accuracy [Poel and Ekkel, 2006]. The classification of healthy infants and infants who experienced pain like brain damage, lip cleft palate, hydrocephalus, and sudden infant death syndrome by using Hidden Markov Model (HMM) produced 91% accuracy [Lederman et al., 2008]. Neural network or HMM classifiers have been recurrently used in previous studies. The
research towards the identification of DBL infant cries used codebook as a
classifier or pattern identifier which is extracted from the k-means clustering and
MFCC. The automatic recognition of birdsongs using MFCC and Vector
Quantization (VQ) codebook was performed and produced 85% accuracy
[Linde et al., 1980]. So, it is observed that various classifiers and the results and
their usage is entirely dependent on the researcher and the specific task at hand.

In the paper involving an infant codebook and feature vector identification
with MFCC [Renanti et al., 2013], the attempt to automate the Dustan Baby
Language is observed. The codebook is developed using all the baby cry data by
means of K-means clustering. It is a set of vectors that represent the distribution
of a particular sound from a speaker in a sound chamber. Every point of the
codebook is known as a codeword. The distance of incoming sound signals to a
speaker codebook is calculated as the sum of the distances of each frame which is
read to the nearest codeword. Finally, input signal is labeled as speaker

coresponding the smallest codebook distance. Speaker modeling using VQ based
is made by clustering from speaker feature to K which is not overlapping. The
data from the videos from the Dustan Baby Language database is processed to
find the characteristics and results. The data is further divided into training and
testing sets. There are 140 training data sets available and they are differentiated
according to various emotional states of the meaning of the cry. There are 35
testing data sets with 7 infant cries for each type of infant cry. The research
varying frame length: 25 ms/frame length = 275, 40 ms/frame length = 440, 60
ms/ frame length = 660, overlap frame: 0%, 25%, 40%, the number of codewords: 1 to 18, except for frame length 275 and overlap frame = 0 using 1 to 29 clusters. The identification of the infant cry is based on the Euclidean distance.

The problem of detecting speech and other vocalizations in a noisy environment is a classic signal processing problem and has been previously addressed by filtering. The most common and effective method was by the use of Wiener filtering [Lei et al., 2009]. Here, a filter is applied at the front end to suppress the noise. However, the amplitude and energy had lower energy post filtering. Banking on the low change of spectral entropy in case the spectral distribution is maintained constant, mel-frequency filter banks could be applied for the extraction of speech audio. The use of smarter, multi-layer neural networks in the recent years have eliminated the need for such signal processing techniques. Deep networks can parse through the signal and learn to balance themselves to extract the usable part of the signal, while ignoring the noise. Thus, they are preferred over signal processing noise removal techniques.

2.2 Laughter Detection:

Keeping the background on cry detection in mind, there lies the necessity to cover various other soundscapes to diversify our research base and explore the other modalities that have been used for the identification of various other audio phenomenons in the world of machine learning. Different de-noising, classification, clustering, reduction, training and outcomes are achieved through a wide variety of techniques. Emphasis has always been placed on emotion in
infant or human interaction in general. Laughter, being the most positive emotion known to us, is explored next. A few papers which have used signal processing-machine learning combinations are picked out and explored.

Mary Tai Knox et al worked on an automatic laughter detection system using neural networks for the purpose of detection of laughter segments and speaker recognition [Knox and Mirghafori, 2007]. Previous work had focused and segmented and identified laughter using various statistical models such as SVM, HMM and GMM. This paper studies the past work and extends the research to eliminate the need for the pre-segmentation of the data. Audio communication usually contains a wealth of information and laughter in general provides important cues for the emotional state of the speaker [Truong and Van Leeuwen, 2005]. Laughter detection in general has other applications such as it provides an important time cue for taking a photo if used in conjunction with a video camera [Carter, 2000]. The most useful paper on automatic laughter detection has been present by none other than Ellis et al [Kennedy and Ellis, 2004] where they studied the detection of overlapped laughter in various meetings. The data was split into non-overlapping one second segments, which were then classified based on whether or not multiple speakers laughed. The support vector machines (SVMs) were trained on four features: MFCCs, delta MFCCs, modulation spectrum, and spatial cues. A true positive rate of 87% was achieved during their study. Truong and van Leeuwen [Knox and Mirghafori, 2007] classified pre-segmented ICSI Meetings data as
laughter or speech. The segments were determined prior to training and testing their system and had variable time durations. The average duration of laughter and speech segments were 2.21 and 2.02 seconds, respectively. They used Gaussian mixture models trained with perceptual linear prediction (PLP) features, pitch and energy, pitch and voicing, and modulation spectrum. They built models for each of the feature sets. The model trained with PLP features performed the best at 13.4% EER for the data set. This paper initially experiments with SVM. The audio had to be segmented to calculate the statistical features such as the mean and the standard deviation. The offset or how often the parameters were calculated depended on how often we wanted to go through the audio to detect the laughter. This gave rise to usual dichotomy of the accuracy vs the computation complexity trade-off. Small offset also resulted in much higher storage for the much higher number of statistical features. The various shortcomings of the SVM such as the need to parse the data into segments, calculate and store to the disk, parse the statistics of the raw features, and poor resolution of start and end times were addressed by using a neural network in this paper. The network was trained with features from a context window of input frames, thereby obviating the need to compute and store the mean and standard deviations since the raw data for each frame was included as a feature. The neural network was used to evaluate the data on a frame-by-frame basis thus eliminating the need to pre-segment the data, while at the same time achieving a good resolution to detect laughter. Experiments were performed with
MFCC and pitch features. To prevent the common problem of over-fitting in machine learning and data mining, the data was differentiated into training and testing.

It is very important to look at the paper published by Ellis et al [Kennedy and Ellis, 2004] in greater details since it is pivotal in the application of laughter detection using machine learning. Laughter is automatically detected in a group setting where more than one person may laugh simultaneously. A SVM classifier is trained using MFCC, delta MFCC, modulation spectrum and time delay between two microphones placed on two edges of the desktop. The ground truth is established using one second long laughter windows and they are labeled either as laughter event or a non laughter event. We follow it up with training a support vector machine classifier on the data using some features to capture the perceptual spectral qualities of laughter (MFCCs, Delta MFCCs), the spatial cues available when multiple participants are laughing simultaneously, and the temporal repetition of syllables in laughter (modulation spectrum). The features calculated are the following:

2.2.1 Cepstral Features:

The mel-frequency cepstral coefficients for each 25ms window with a 10ms forward shift is calculated. The mean and variance of each coefficient over the 100 sets of MFCCs that are calculated for each one-second window is taken.
2.2.2 Delta Cepstral Features:

The delta features are determined by calculating the deltas of the MFCCs with a 25ms window and 10ms forward shift. The standard deviation of each coefficient over the 100 sets of Delta MFCCs that are calculated for each one-second window is taken following that.

2.2.3 Spatial Cues:

The spatial features are calculated by cross-correlating the signals from two tabletop microphones over 100ms frames with a 50ms forward shift. For each cross-correlation, we find the normalized maximum and the time delay for the corresponding for the maximum.

2.2.4 Modulation Spectrum:

They are calculated by taking a one-second waveform, summing the energy in the 1000Hz - 4000Hz range (since most of the laughter energy is in this segment) in 20 ms windows, applying a Hanning window, and then taking the DFT. We use the first 20 coefficients of the DFT as our modulation spectrum features.

The background provided thus far gives a basic idea of the past and existing statistical models used in specific sound classification such and cry and laughter from human sounds. The next goal is to move further into the domain of machine learning and explore newer forms of classification. In recent years, there has been a revival in the interest in neural networks in the speech recognition community [Deng et al., 2013]. While past neural networks could not
significantly perform very successful combinations of HMM-GMM models etc, recent developments have proven otherwise. Primary reason for these are 1) Making the networks more deeper makes them much more powerful and this gave rise to the deep neural networks (DNN), 2) Initializing the weights more sensibly [Hinton et al., 2012] [Mohamed et al., 2012] [Deng et al., 2012] [Yu et al., 2011]

2.3 Environmental Sound Classification:

It is important to cover some of the environment sound classification techniques since many of the machine learning techniques used for speech recognition is similar to environmental and urban sound classification. Selina Chu et al [Chu et al., 2009] in their paper on environmental sound recognition with time-frequency features discusses the MFCC as a popular method to describe the audio spectral shape. Environmental sounds such as the chirping of crickets have a very strong temporal element, however, there exist very few time domain features to characterize them. Thus, a Matching Pursuit (MP) algorithm to obtain time-frequency characteristics is used to complement the MFCC. It is very important to understand that filter-bank based MFCC computation approximates very important features of the human auditory system. MFCCs have been shown to work well for structured sounds such as music but they might degrade in the presence of environmental noise. Thus, MP algorithm is suggested as an alternative.

The analysis of sound environment in the thesis written by Peltonen [Peltonen et al., 2002] goes into describe two classification schemes. The first one
is the averaging the band-energy ratio and classifying them using a KNN classifier. The other one uses a combination of MFCCs and band-energy to ratio as a method for representing sounds in from different frequency ranges.

The department of Music Technology and NYU along with the Center for Urban Science and Progress (CUSP) has been conducting research in the field of urban sound acquisition, pattern recognition and classification. Juan Bello et al recently published an important papers on this area: one of them being on unsupervised feature learning for urban sound classification [Salamon and Bello, 2015]. The K-means algorithm is explored in the domain of urban sound classification. It is used and compared with the existing techniques such as the MFCC for baseline comparison. While the temporal dynamics did not show to have a significant effect in natural sounds such as bird song classification, they played an important role in the urban sound classification [Stowell and Plumbley, 2014]. As noted, the raw data is never a suitable input to any form of classifier due to high dimensionality and perceptually similar sounds. Thus the popular form of learning is to convert the signal into the time-frequency representations, most commonly MFCC. The log scaled mel spectrogram with 40 components spanning the audio frequency range is calculated using a window and hop size of 23ms. While these could be directly used as an input, it is proven that a PCA or ZCA improves the performance by selecting the features which have a greater effect on the output [Coates and Ng, 2012]. It is very important to understand that feature learning can be applied to individual frames or
alternative frame to form 2D patches. Grouping many frames by concatenating them together before performing PCA is called shingling. This allows us to learn features which take into account temporal dynamics. For example, while trying to differentiate between idling of engines and jackhammers, temporal dynamics play a huge role since their instantaneous features can be very similar.
3

Tools and Methods

3.1 Tools Used:

A brief introduction to the various tools used for research is given below.

3.1.1 MATLAB and MIRToolBox:

MATLAB is a very popular and the most widely used programming interface used for signal analysis, data visualization etc. It was developed by MathWorks and is currently the most commonly used software platform in academia. Most people have already extensively used it and hence there will be no detailed discussion on the software package itself. The standard signal processing toolbox has been utilized in this thesis. It is important to note that a standout toolbox called the MIRToolBox [Lartillot and Toiviainen, 2007], which is a set of integrated features written in MATLAB to extract musical and audio related features, is most commonly used in the field of Musical Information Retrieval. The MIRToolBox also has dependency on Auditory Toolbox [Slaney, 1998], NetLab [Nabney, 2002], and SOM-Toolbox [Vesanto et al., 1999].

The MIRToolbox has an object oriented architecture. The superclass from which all the data and the methods and derived is called mirdata. A hierarchy is established from the mirdata hyperclass. Most of the analyzed parameters return a single valued scalar from the frame by frame analysis. However, the non-scalar features are organized into specialized classes such as the mirautocor, mirspectrum, mirhisto, mirmfcc, etc. The primary application of MIRToolbox is
the easy to use, on the fly feature extraction. Even with the multitude of advantages presented by this toolbox, its critical drawback is its memory management. Combined with memory intensive MATLAB application, it struggles to parse through large data sets when performing frame by frame analysis even with the default settings. That is why we explore other, faster feature extractors in the latter stages of our project.

3.1.2 WEKA:

The Waikato Environment for Knowledge Analysis (WEKA) [Hall et al., 2009] had its inception in 1992. After years of development, it is an extremely popular machine learning tool written in JAVA and is open to the public for use. It is not only a conjugation of various machine learning models but also a platform for independent development for people who want to use algorithms outside the ones that have already been provided in the software. Recently, it has reached widespread acceptance in academia and data mining research due to its easy to use interface and quick results without the need to write multiple lines of code for machine learning operations. Its sophisticated modular arrangement is what allows us to build high level functions on top of the basic structures. The toolkit is easy to expand due to an API, plug-in mechanism. WEKA also has a very easy to use Graphical User Interface (GUI) that allows us to use it easily. The main interface we use is called the ”Explorer”. It is divided into several panels, each of with different stages of machine learning options. The first panel is called ”Pre-process” which has a group of filters that
perform operations on the input file in various file formats such as "ARFF" and "CSV". The next one on the panel is "classify" gives us access to WEKAs classification and regression algorithms. By default it runs cross-validation on datasets preprocessed for predictive performance. It also gives rise to various graphical models, ROCs and thresholds. Along with supervised algorithms, WEKA allows unsupervised learning features through the "cluster" panel. It provides a simple enough model for the evaluation of the likelihood based on clustering algorithms and true clustering. Although it is critical to note that the WEKA clustering algorithms are not as extensively developed as its regression and classification algorithms.

3.1.3 LibRosa:

LabROSA is a very popular speech processing laboratory run under Dr. Dan Ellis at the Columbia University. Dr. Brian McFee, in conjugation with NYU developed a fast, python based package for audio feature extraction [McFee et al., 2015]. Although MIR is a fairly new field of research (the first ISMIR conference held back in 2000), there have been various attempts in C++ and MATLAB. However, the scalability, stability and the ease of use left much to be desired. Due to the data driven nature of MIR research, there has been a recent shift towards Python due to its data driven architecture and ease of use. Various machine learning libraries such as scikit-learn, py-brain and theano based deep learning models have been developed. Irrespective of these developments, there was a lack of a stable core library for feature extraction in audio which is
the very basis of MIR and other machine learning related research. LibRosa serves this purpose by being a core python library for audio feature extraction. There are design principles of librosa that need to be discussed with respect to why it has been exploited as the primary feature extraction tool in this thesis. First, it has a very low barrier for entry for anyone who is used to MATLAB based research. There would be very low transition time involved once you get past the intricacies of installation of any Python based library. Second, there is a great deal of standardization involved in this package. The variable names, processes and interfaces have all been standardization for easy of use and lack of confusion. Third, in most cases there is backward compatibility. The nose framework in maintained in most modules of feature extraction. Fourth, since MIR is a new and fast progressing field of research, most of the tools and methods used are modular. That allows the users add in their own code. Fifth, the code provided is very readable, developed and constantly updated on GitHub. Most software practices such as Travis is applied, all functions are executed in pure Python and documented using Sphinx.

Reason for using LIBROSA:

There was a major need for fast processing of data. MIRToolBox in MATLAB, although effective, is cursed with slow speed and crippling memory restrictions. Although various techniques such as dividing the data up into smaller chunks and iterating them one by one and appending the results were tried on MIRToolBox, the initial set of data extraction took hours and often
crashed in between. Even a test run with mere 3 minutes of crying and non-crying from the mother-infant reunions took more than an hour to process. Since, one of the goals of this project is to find computationally efficient ways of feature extraction in machine learning, LibRosa was tried for quick and efficient feature extraction.

3.2 Data Collection and Processing:

3.2.1 LENA Recorder:

The data was collected using LENA devices. The LENA recorder is pocket sized power house. It is as light as 2 ounces, designed to be worn by children and can record up to 16 hours of audio data. It is made up of a powerful microprocessor with advanced compression capabilities. It also has audio components that are similar to hearing aids costing a lot more. The LENA recorder is inserted into the pocket of an article of LENAs specially-designed clothing at the beginning of the recording. At the end, it can be plugged into a computer to extract the audio data from.

3.2.2 Data Processing:

The collected data was stored in uncompressed .wav format. The sampling rate used as 44.1 KHz and the stereo format was used. The interaction data was loaded in Audacity and normalized and noisy chunks were removed. It was later divided into episodes of interaction. Reunion 1 and 2 marked as R1 and
R2 were most important since infant reunited with the mother during these episodes those were the most important part of the research. This is where the babies often showed elevated levels of emotional response or change in their current state (going from crying to silent, crying to happy, happy to crying, silent to crying, playing to silent, playing to happy, etc.). Each episode is about 21 minutes long and each reunion averages around 3 minutes.

3.3 Creation of Data Sets:

A total of 10 subject were used with subject numbers FN005, FN008, FN049, FN061, FN062, FN069, FN071, FN074, FN082, FN090 for the study. Separate audio sets are required for the purpose of training and testing our model after feature extraction. The procedure for creation of those audio sets are discussed below:

3.3.1 Crying Training Audio:

Initial focus was on R1 and R2 audio sets since they were of primary interest in the research and they eventually lead on to the use of rest of the data for the extraction of crying and non-crying parts. But first, pure crying chunks were extracted from each episode (R1 and R2) and stored in separate audio files. Sections which lead onto crying, whispering, other disagreeing sounds made by the baby were NOT considered as a part of crying since we only wanted classify the sections consists of pure crying. After combining them together there was approximately 3 minutes of total crying. To expand the data set further, the process was continued for the entire available audio set. Sections of crying (with
some noise associated with the robustness of the model) were extracted from the
database, stored into separate files and combined. The sampling rate and the
stereo functions were maintained during every conversion process. At the end of
the entire procedure there was a total of 20 minutes and 59 seconds of crying
present in a wave file at 44 KHz sampling rate for analysis.

3.3.2 Non-Crying Training Audio:

As previously discussed in the background, there are various methods for
extracting segments marked as non-crying. Then aim was to incorporate every
other sound present in the recordings to train the model to differentiate them
from crying. There was also a need to preserve the temporal nature of the sound
due to the nature of our event classification. Chunks were again extracted from
the mother’s speech, toy sounds, background noise, child whimpering, and other
sounds like instructions, and silence. For the preparation of the non-crying set an
emphasis was placed on the gradual progression of change since whimpering
sometimes leads on to crying and such whimpering was excluded from our
non-crying training set. An analogy of a broad spectrum antibiotic often surfaced
as every other sound that is not crying was divided into separate audio files. The
same process as crying was followed and they were combined into one single file
of length 22 minutes. The length of the file could be questioned since there is the
availability of much larger amount of non crying data. It is interesting to note
that the first non crying data set was as long as approximately 35 minutes. The
reason for the reduced data set would be discussed in the results section.
Note: There was no separate procedure followed to make sure that the segments from the same subject did not form a part of the training and the testing split.

3.4 Audio Feature Extraction:

The different tools and methods were used for audio feature extraction. MATLAB based features are used initially and LibRosa based real time extraction is used after deciding the useful features.

3.4.1 MATLAB based extraction:

For testing and evaluation purposes, initial feature extraction was performed on MATLAB using the MIRToolBox. The MIRToolBox is often considered for use only in music worked moderately well on speech/baby sound signals. The cry segments were loaded individually and iterated through using a simple loop. The loaded audio was immediately frame segmented using a frame size of 50ms and a 50% overlap. The frame segmented audio was passed through the MIRToolBox and mirfeature was performed on them which gave an array of every feature calculated by MIRToolBox. The features that were considered based on signal processing experience and past papers are: MFCC, delta-MFCC, delta-delta-MFCC, Pitch, Zero Crossing, Spectral Brightness, Spectral Centroid, Kurtosis, RMS energy, roll-off and spectral flux. The features were column wise exported into a CSV file.
3.4.2 Librosa based extraction:

As discussed previously, the need for fast and real-time feature extraction lead us to using LibRosa for the feature extraction in Python. Unlike MIRToolBox, Librosa has proven to be much better for speech-based extraction. For real-time feature extraction, the audio file as a whole is read into librosa and downsampled to 22k and converted to Mono. It is very important to drop a note on the sample rate converter used here. The librosa downsampler falls back on the scikits.samplerate (scikit-learn) and it is a painstakingly slow sample rate converter. There was a large amount of initial disappointment on the time taken to downsample 3 minutes of audio while we were utilizing the scikit.samplerate downsampler. This gave rise to the need for a much lower level and faster sample rate converter.

Libsamplerate:

Libsamplerate aka Secret Rabbit Code (SRC) is a sample rate converter developed by Erik de Castro Lopo. SRC is capable of arbitrary and time-varying conversions which consist of up-sampling and down-sampling by a factor of 256. The ratio of the input and the output samples can be irrational numbers. The conversion ratio can also vary with time for speeding up and slowing down effects. SRC provides a small number of converters to allow quality vs. computation cost tradeoff. The current best converter provides a signal-to-noise ratio of 145dB with -3dB passband extending from DC to 96% of the theoretical best bandwidth when input and output sample rates are given. It is written in C
and uses wrappers to compile in Python.

Unaltered versions of frame length and overlap space is used from Librosas default settings. The default frame and hop lengths (how much we can advance the analysis time origin from frame to frame) are set to 2048 and 512 samples, respectively. At the default sampling rate of 22050 Hz, this corresponds to overlapping frames of approximately 93ms, spaced by 23ms. The frames are also centered by default. For all sliding window analysis, Hanning window is used. The majority of the feature analysis on Librosa produces a two dimensional array stored as librosa.ndarry. 12 band MFCCs and delta-MFCCs are extracted using the spectral features. Zero crossing, RMS calculations are performed next. The information is stored in 28 columns and unlimited number of rows (based on the length of the audio) and converted into a CSV. The 28th column of data is used a class label where A is used to denote crying and B is used to denote non-crying. Hence, the crying signal is first processed and the features are extracted and stored into a CSV and class label is marked as A. This is followed by processing and storing of the information of the non-cry audio samples which are then appended to the existing CSV and marked as class label B. This entire file would eventually act as our training set.

3.5 Machine Learning:

Primarily WEKA but also python based machine learning is used. The machine learning algorithms used are discussed below:
3.5.1 Zero-R Rule:

Every machine learning classification problem needs an established baseline to check the validity the model in use. If the model developed acts worse than the baseline, it should be immediately discarded. An evenly spread probability of the classes denotes a non biased data set for training and as a result a good performance of the trained set on the testing data. The ZeroR rule is used in WEKA for the establishment of the baseline. As the name suggests, there are zero rules used for this so this cannot actually be used for classification. It is a frequency based system where it creates a frequency table for its target and selects its most frequent value [Fan et al., 2008].

3.5.2 Multilayer Perceptron:

A feed-forward, multi-layered artificial neural network model uses backpropagation of error to train itself [Rumelhart et al., 1985]. It consists of multiple neurons connected to each other and are activated by a sigmoid function which helps them to differentiate between non-linearly separated data. Multilayer perceptron would be reduced to a perceptron by making the hidden layers equal to 1. A traditional multilayer perceptron has 3 or more hidden layers and are considered a form of deep neural network and is one of the simpler deep learning techniques. The learning actually occurs through the change in weights of the connection as the error or the deviation of the error is back propagated through the network. The backpropagation uses a gradient descent algorithm which effectively minimizes the cost function or the takes the least computationally
taxing path (with the accuracy in mind) while backpropagating the error to reach the fastest way to reach the most accurate result. As the name suggests, we could easily use an analogy of climbing down from a hill. We try to take the steepest (fastest) path without sacrificing a sure footing.

3.5.3 Random Forrest Classifier:

It is also commonly referred to as the tree bagging method or the tree bagger in short [Breiman, 2001]. It selects a n number of random features and divides the data into those parts while building an ensemble of trees. The trees are constructed using those features and are grown to the largest possible size. Two factors are important to notice here. Firstly, the correlation between the trees increases the error rate in the tree. Secondly, the strength of each individual tree contributes to the overall classifier performance. When the training set for the current tree is drawn by sampling with replacement, about one-third of the cases are left out of the sample. This OOB (out-of-bag) data is used to get a running unbiased estimate of the classification error as trees are added to the forest. It is also used to get estimates of variable importance. After each tree is built, all of the data are run down the tree, and proximities are computed for each pair of cases. If two cases occupy the same terminal node, their proximity is increased by one. At the end of the run, the proximities are normalized by dividing by the number of trees. Proximities are used in replacing missing data, locating outliers, and producing illuminating low-dimensional views of the data.
3.5.4 *Scikit-learn Integration:*

Scikit-learn is a python based machine learning library widely used for the use for various classifier and moderately deep neural network implementations. It is the home for state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Although, the majority of the code is written using Python, some of the low level functions for speed are taken care of by the C++ libraries LibSVM [Chang and Lin, 2001] and LibLinear [Fan et al., 2008] that provide reference implementations of SVMs and generalized linear models with compatible licenses.
4

Results and Figures

The results section is divided into the initial MIRToolBox based results, the Librosa based real-time feature extraction and the performance of various machine learning and classification algorithms used on the training and the testing data.

4.1 MIRToolBox Results:

Various features that contributed comparative features are discussed below. These features have been handpicked after extensive analysis of all mirfeatures, PCAs and different combinations tried in the past research material.

4.1.1 Inharmonicity:

In-harmonicity is the measure of the deviation of the overtones from the fundamental frequencies and its integral multiples. The results for small crying and non crying segments are shown below. The crying segments show a continuous increase in the in-harmonicity and non-crying display a continuous decrease. Figures for two short cry and non-crying segments are displayed below:
Figure 1: In-harmonicity of Crying

Figure 2: In-harmonicity of Non Crying
4.1.2 Similarity Matrix:

The similarity matrix is calculated to measure the autocorrelation in the signals. In a similarity matrix, self similarity is measured between the data sequence. The similarity matrix is calculated here under the assumption that the crying data would have a greater self similarity. The results are depicted below in crying and non crying data segments below:

Figure 3: Similarity Matrix of Crying
Figure 4: **Similarity Matrix of Non Crying**

4.1.3 **MFCC:**

The Mel-frequency cepstral coefficient as proven before is a very crucial model for perceptive (auditory perception) data analysis. Non-scaled MFCCs are depicted below for crying and non crying data respectively.
Figure 5: MFCC Crying

Figure 6: MFCC Non Crying
4.1.4 Pitch:

Pitch is the perception of frequency in human beings. As expected from previous studies, the pitch for crying signal has a much more concentrated distribution between 350Hz and 600Hz range. An example of the pitch analysis of the cry signal is shown below in the figure. The non-cry signal however shows higher variability as expected from the different combination of signals individually exhibiting a different set of pitches.

Figure 7: Pitch Crying
Figure 8: Pitch Non Crying
4.1.5 RMS Energy

The root mean square energy of the signals are calculated with the expectation that cry signal would exhibit a greater amount of energy. The results are according to our expectations and are depicted below in the following figures:

Figure 9: RMS of Crying
4.2 Librosa Based Extraction:

The following set of signal analysis is performed in Python using the librosa library package and the libsamplerate sampling rate converter wrapper. The features shows here using librosa were the final features used to make our training and testing sample sets. The entire crying audio segment and the entire non-crying audio segments were analyzed. The features and the figures are depicted below:

4.2.1 MFCC, Delta-MFCC, Delta-Delta MFCC:

Real time MFCC features were calculated using librosa but delta-MFCC and delta-delta MFCCs were added as well. Ultimately only the delta-MFCC
values are appended to the MFCCs in our training set.

Delta-MFCCs and the delta-delta MFCCs are also known as differential and acceleration coefficients. The MFCC feature vector describes only the power spectral envelope of a single frame, but the dynamic information over time should also be calculated. That is where delta-MFCC comes in. The corresponding figures for the crying and non-crying segments are shown below:

![Figure 11: MFCC Crying](image-url)
4.2.2 Energy:

The RMS energy and the log-power spectrogram of the crying and non-crying segments are displayed below:
Figure 13: Energy Crying

Figure 14: Energy Non Crying
4.2.3 *Spectral Centroid*:

The spectral centroid often depicts the brightness of the sound and its calculated by the ‘gravity’ of the sound. The individual centroid of a spectral frame is defined as the average frequency weighted by amplitudes, divided by the sum of the amplitudes. It is calculated for the crying and the non-crying segments and displayed below:

Figure 15: **Spectral Centroid Crying**

Figure 16: **Spectral Centroid Non Crying**
4.2.4 Zero-Crossing:

Zero crossing is the temporal representation of how many times the signal crosses the zero or the x-axis. It is a method of finding the frequency domain representation of a time domain signal. It is calculated for the entire crying and non-crying audio segments and depicted below:

![Figure 17: Zero Crossing Crying](image1)

![Figure 18: Zero Crossing Non Crying](image2)
4.3 Classifiers and Performance:

The results from the Zero-R method, Tree-bagger classifier and the multilayer perceptron are depicted below:

4.3.1 Zero-R Classifier:

This method is used for the baseline estimation. Since, our training data set is roughly a 50/50 mixture of crying and non-crying, it should exhibit a similar split using the Zero R rule. For the simple and less computationally intensive nature of this model, we use the entire dataset. In our result, it exhibits a 51.2% and 48.8% split for the crying and non-crying data set. Using the reduced dataset, we get an even better result. The result for the entire data set depicted below:
Figure 19: Zero R classifier with 10 fold cross-validation and 51.2% Split
4.3.2 Multi-Layer Perceptron:

A feed-forward multilayer perceptron with backpropagation of error is used to classify the reduced dataset with a 10 fold cross-validation. It has 15 hidden layers which essentially depicts the minimum number needed since the value is the mean of the number of attributes added to the number of classes. It has a learning rate of 0.3 and a momentum of 0.2 for the backpropagation, a validation threshold of 20 to terminate for consecutive 20 errors, and finally the number of training epochs is 500. The time taken to build this model for the reduced data set is 463.2 seconds and the accuracy achieved is 97.5%. The entire data set is also processed through a MLP but instead of using the 10 fold cross validation, it is processed using a 66/34% training/testing split. The other parameters remain the same as the whole data set. The results for the reduced followed by the whole data set are shown below:
Figure 20: Multilayer Perceptron with Hidden Layers

Time taken to build model: 463.23 seconds

=== Stratified cross-validation ===

--- Summary ---

Correctly Classified Instances 60792 97.5497 %
Incorrectly Classified Instances 1527 2.4503 %
Kappa statistic 0.951
Mean absolute error 0.034
Root mean squared error 0.1383
Relative absolute error 6.809 %
Root relative squared error 27.6583 %
Total Number of Instances 62319

=== Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>ROC Area</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.978</td>
<td>0.027</td>
<td>0.974</td>
<td>0.978</td>
<td>0.976</td>
<td>0.996</td>
<td>A</td>
</tr>
<tr>
<td>0.973</td>
<td>0.022</td>
<td>0.977</td>
<td>0.973</td>
<td>0.975</td>
<td>0.996</td>
<td>B</td>
</tr>
</tbody>
</table>

Weighted Avg. 0.975 0.025 0.976 0.975 0.975 0.996

=== Confusion Matrix ===

```
a   b    <-- classified as
30040 705 | a = A
822 30152 | b = B
```

Figure 21: Multilayer Perceptron with 10 fold cross validation and 97.5% Accuracy
Time taken to build model: 803.34 seconds

--- Evaluation on test split ---

--- Summary ---
Correctly Classified Instances 38800 97.4292 %
Incorrectly Classified Instances 971 2.5708 %
Kappa statistic 0.9494
Mean absolute error 0.032
Root mean squared error 0.144
Relative absolute error 6.4169 %
Root relative squared error 28.8145 %
Total Number of Instances 37771

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>AUC Area</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.975</td>
<td>0.025</td>
<td>0.973</td>
<td>0.975</td>
<td>0.974</td>
<td>0.955</td>
<td>A</td>
</tr>
<tr>
<td>0.974</td>
<td>0.025</td>
<td>0.976</td>
<td>0.974</td>
<td>0.975</td>
<td>0.955</td>
<td>B</td>
</tr>
</tbody>
</table>

Weighted Avg. 0.974 0.025 0.974 0.974 0.974 0.955

--- Confusion Matrix ---

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>18015</td>
<td>471</td>
</tr>
<tr>
<td>b</td>
<td>500</td>
<td>18735</td>
</tr>
</tbody>
</table>

Figure 22: Multilayer Perceptron with a training/testing split and 97.4% Accuracy
4.3.3 Random Forrest Classifier:

Two different tree baggers are implemented on two different sets of data for the evaluation of the classification performance. First, a tree bagger with 100 trees is implemented with 5 random features on the entire data set with a 66/34 percent split between the training the testing data in the model. Due to the large number of data points, cross-validation either proved to be too time consuming or too memory intensive. It reached an out of bad error of 0.0257 and the final classification accuracy was 97.2 %. There were a total of 111091 instances and the testing was performed on 36728 of them which yielded only 1043 mis-classified instances.

A second tree bagger is used with the reduced data set and a reduced number of trees. The new number of trees used is 50 while every other parameter remains unchanged. The results slightly drop due to the 10 fold cross validation performed on the data but is still at a healthy 96.6 %. The results are depicted below for a random trial. It is again very important to note that random data sets are selected every time so there is a slight margin of variability in the results. The results are showed in the order:
Figure 23: Random Forrest with Percentage Split and 97.2% Accuracy
Figure 24: Random Forrest with 10 fold X-Val and 96.6 % Accuracy
5

Evaluation and Discussions

The findings so far are summarized and analyzed below. The first noticeable observation is the drastic improvement of the sample rate converter (SRC) due to the libsamplerate wrapper and the source code execution in C. There was an exponential decrease in the time taken when we implemented the down-sampler in C. This drastically improved the performance and turned it into a system that could analyze signals for feature extractions real time.

Based on past experiences and study of signal processing during my masters degree, combined with the background development of this thesis, I strongly feel that the features used for extraction are the best options for our problem.

A major focus of this thesis is to utilize computationally efficient MIR and feature extractor systems. Librosa was not designed for speech processing and its the first of a kind implementation of Librosa to extract features from infant cry signals. The success of this thesis also depicts the robustness of Librosa. It successfully fills the void of a python based audio feature extraction library in the area of machine learning. However, the high level nature of python at times leaves us wanting in terms of sheer computational performance. Using low level language implementation and using wrappers to execute them Python is also a very efficient way of running code. Recent implementations on Cython is the best
example of this kind of an example. It is very interesting to comment here that
the Pitch estimator of librosa using interpolated STFT as suggested by Julius O
Smith of CCRMA, Stanford was the only unreliable librosa feature. The
performance varied every trial and changing the fmin and fmax values changed
the spread of the pitch entirely. The bug has been reported and is being
currently addressed.

The modular nature of Librosa proves critical in ease of use. It the could
be easily presented in the IPython Notebook format and it would be an ideal
interactive, easy to use interface for re-using the code with the whole project
divided into smaller parts comprising of the results and the output plots.

The need for correct feature selection and a large, non-biased training set
is greatly emphasized. The Zero-R rule is the ideal estimator to judge that. Also,
it is important to note that in such large datasets, over-fitting is a recurrent
issue. To avoid over-fitting, it is critical to make sure that multiple training
samples are not extracted from the same recording. This concept extends to
cross-validation, which is again method for the elimination of over-fitting.

The ensemble bagger and the MLP perform very similarly on our data.
While the MLP used hidden layers and a back-propagation, the ensemble bagger
excels by accumulating a large number of trees together for higher efficiency.
Based on my observations and performance evaluations, I would choose the tree
bagger over the MLP since its easier to train and test. Tree bagger is more time
efficient and it will be faster to use in real life scenarios. It is important to
measure the Receiver Operating Characteristics and the Cost Function of the classifiers for further evaluation and comparison of their performance.

5.1 Receiver Operating Characteristics:

It simply illustrates the performance of a two class (binary) classification system as its discrimination function is varied through time. The true positive rate of the classifier (y axis) is plotted against the false positive rate (x axis) to give a continuous measure of its performance. The ROC characteristics of a random forest classifier and a MLP are illustrated below:

![ROC Random Forest](image)

Figure 25: **ROC Random Forest**
5.2 Cost Function:

The Cost function also known as the loss function is a parametric estimation where the event is a function of the difference of the true and the estimated value. Therefore, it is the penalty for an incorrect classification. It is the comparison of the Probability Cost Function and the Normalized Expected Cost of the decision. The plots for the RF and the MLP are given below. The left axis represents class A or the right axis represents class B.
Figure 27: Cost Random Forrest

Figure 28: Cost Multilayer Perceptron
5.3 Random Forrest Runtime Analysis:

A comparison is made between various tree sizes and two different data sizes for the time training time using the random forest bagging method. A table is displayed below with all the results:

Table 1: Random Forrest Runtime Analysis

<table>
<thead>
<tr>
<th>No of Trees</th>
<th>Reduced Data Set(s)</th>
<th>Whole Data set(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>39.04</td>
<td>64.94</td>
</tr>
<tr>
<td>20</td>
<td>76.72</td>
<td>122.9</td>
</tr>
<tr>
<td>50</td>
<td>190.9</td>
<td>309.5</td>
</tr>
<tr>
<td>80</td>
<td>301.2</td>
<td>513.4</td>
</tr>
<tr>
<td>100</td>
<td>371.5</td>
<td>650.5</td>
</tr>
</tbody>
</table>

5.4 Conclusion:

A special emphasis needs to be given to the importance of feature selection in any machine learning problem. A much higher importance needs to be placed on the feature selection than on the classifier selection. A classifier can only be as good as the data presented to it and the entire data presented to it is determined by the selection and the combination of the features used. For example, the previous highest accuracy of cry detection stalled at 88-91% due to the fact that delta-MFCC and the corresponding temporal changes were never incorporated into the training data. Incorporation of this feature gave the performance a significant boost.

Preprocessing, cleaning and proper frame segmentation of data is very important for the creation of a good feature set as well. In the case of this project, past findings acted as a good starting point but further experimentations
and trials is highly recommended for the fine tuning of the system.

The classifiers should be tested and chosen only towards the end, after the creation of an efficient and a robust training set. It is important to re-emphasize that experimenting with classifiers with a poor data set is like trying to get a good mix out of poorly recorded tracks. There is simply no shortcut there. However, it is interesting to note that various classifiers are good at various different things. For example, Naive-Bayes gives equal weight to all present attributes. In our case due to the high volume of data and a large number of attributes, we took the traditional route of ensemble baggers and multiple layers of artificial neural networks. Finally, we see various performance vs computational efficiency measures as we analyze the performance of the random tree bagger with varying number of trees. A critical trade-off measure is highly recommended for every researcher in the field of machine learning.

Due to the perceptual nature of every animal call/sound, the same model can be extended to environmental sound analysis. It could also have use in urban sound classification and geo-tagging.
Further Scope

This thesis was restricted to the analysis and classification of infant sounds. The goal is to expand the study into environmental and urban sounds. The plan to execute a bird sound detector is already in motion and so is the 'dade-box' project which is going to collect environmental, sonic and geographical data around the Miami-Dade country and use real-time signal processing and machine learning algorithms to isolate significant or emergency events such as accidents or gunshots.

Due to the lack of a NVIDIA GPU on the primary computer, depths of theano based libraries, Tensor Flow and other deep networks was not executed. They were studied in details and would constitute the next part of the research in soundscape analysis and classification. Further classification of cry sounds to depict the emotional state of the baby (such as hunger, discomfort etc.) have already been touched upon by other researchers but there is still a large scope of improvement. Finally, a cry detector and classification app (Android and iOS) would be a very usable by-product of this thesis and could be seen being used for not only different kinds of research but also by infant caregivers and mothers who might leave their phone with their infants for short durations and get updates on their emotional states on their respective smart watches.
LIST OF REFERENCES

